
JOURNAL OF COMPUTATTONAL PHYSICS 9,25 l-270 (1992)

Fast Potential Theory. I I. Layer Potentials and Discrete Sums*

JOHN STRAIN +

Courant Institute of Mathematical Sciences, 251 Mereer Street, New York, New York 10012

Received March 20, 1990; revised May 24, 1991

We present three new families of fast algorithms for classical poten-
tial theory, based on Ewald summation and fast transforms of
Gaussians and Fourier series. Ewald summation separates the Green
function for a cube into a high-frequency localized part and a rapidly-
converging Fourier series. Each part can then be evaluated efficiently
with appropriate fast transform algorithms. Our algorithms are naturally
suited to the use of Green functions with boundary conditions imposed
on the boundary of a cube, rather than free-space Green functions. Our
first algorithm evaluates classical layer potentials on the boundary of a
d-dimensional domain, with d equal to two or three. The quadrature
error is 0(/Y) + E, where h is the mesh size on the boundary and m is
the order of quadrature used. The algorithm evaluates the discretized
potential using N elements at O(N) points in O(N log N) arithmetic
operations. The constant in O(N log N) depends logarithmically on the
desired error tolerance. Our second scheme evaluates a layer potential
on the domain itself, with the same accuracy. It produces Md values
using N boundary elements in 0((N + M”) log M) arithmetic opera-
tions. Our third method evaluates a discrete sum of values of the Green
function, of the type which occur in particle methods. It attains error E
at a cost O(N”log N), where 0=2/(1 +D/d) and D is the Hausdorff
dimension of the set where the sources concentrate in the limit N -+ m.
Thus it is O(N log N) when the sources do not cluster too much and
close to O(N log N) in the important practical case when the points
are uniformly distributed over a hypersurface. We also sketch an
O(N log N) algorithm based on special functions. Two-dimensional
numerical results are presented for all three algorithms. Layer potentials
are evaluated to second-order accuracy, in times which exhibit con-
siderable speedups even over a reasonably sophisticated direct calcula-
tion. Discrete sum calculations are speeded up astronomically; our
algorithm reduces the CPU time required for a calculation with 40,000
points from six months to one hour. 0 1992 Academbc Pm, IIIC.

1. INTRODUCTION

A stable and accurate approach to the numerical solution
of the Laplace equation

-Au=f in 12cRd (1)

au
nu+P-$=g on eat2 (2)

* Supported by DARPA/AFOSR Contract No. F-49620-87-C-0065 and
a NSF Mathematical Sciences Postdoctoral Research Fellowship.

+ Current address: Department of Mathematics, Princeton University,
Fine Hall, Washington Road, Princeton, NJ 08544.

is provided by the integral equations of classical potential
theory. In this approach, we use a known Green function
K(x, x’) for a simple region containing Q to form layer
potentials

) = s, K(x, x’) ,u(x’) dx’

&4x)=J-g(x, x’) p(x’) dx’

and the volume potential

v-cx)=p(x, x’)f(x’) dx’.

Classically, the free-space Green function has been the most
popular [21], but when 52 is bounded, we will see that there
are significant computational advantages to using the
Green function for a cube B containing Q, with boundary
conditions imposed on 3s. With any Green function, we can
seek a solution u as an appropriate linear combination of
volume and layer potentials; such an ansatz has the right
Laplacian in 52, and the boundary conditions will be
satisfied if we choose the density p on r properiy. Usually
this requires the solution of a second-kind integral equation
on r, with an operator combining the nonsingular parts of
the double layer potential and the normal derivative of the
single layer potential. Numerical solution of these boundary
integral equations and the resulting boundary element
methods have been extensively studied; see [7, 22, 291, for
example.

There are also interface problems occurring in crystal
growth [27,28], in which (2) is replaced by a jump
condition

au+/3 ; =g [1 on r

and the problem is augmented by a boundary condition on
a cube B containing Q, say

u=ug on B.

251 0021-9991/92 $3.00

Copyright 0 1992 by Academic Press, Inc.
All rights of reproduction in any form reserved.

252 JOHN STRAIN

The Laplace equation is to hold everywhere in B\F’. These
problems reduce to an integral equation

BP+asP=g on r,

with an integral operator which is the single layer potential
restricted to ZY

The advantages to integral equation formulations of these
problems are efficiency, stability, and accuracy. The integral
equation approach is stable and accurate because integral
operators are bounded and even smoothing on appropriate
function spaces; thus discrete approximations can have
bounded condition numbers as the mesh is relined [19].
(This contrasts with usual finite difference and finite element
approximations, which approximate unbounded operators
and therefore may have very large condition numbers when
the mesh is very line.) It is efficient because one reduces a
d-dimensional problem (to be solved on the d-dimensional
domain Q) to a (d- 1)-dimensional problem to be solved
on K The price one pays for this reduction in dimen-
sionality is loss of sparsity in the linear systems one has to
solve. This can be overcome, however, by introducing “fast
algorithms” which apply or invert the discretized operators
of classical potential theory in essentially optimal amounts
of CPU time. This has been done for various special cases in
[24, 231 and with some generality in [3, 41.

In this paper, we present new fast algorithms for the
approximate evaluation of classical layer potentials formed
with the Green function for a square (if d= 2) or cube (if
d = 3). Our methods use Ewald summation [1, 111 to split
the potential into a high-frequency localized part and a low-
frequency part with separated variables. The localized part
can be evaluated efficiently, because it decays very fast away
from the source. The low-frequency part is a rapidly con-
vergent Fourier series, which can be evaluated by non-
equidistant fast Fourier transform techniques. Balancing
the work and error involved by adjusting the splitting
parameter leads to a fast O(N log N) algorithm.

Our algorithms are based on different principles from
earlier fast potential theories such as the fast multipole
method [5] or the method of local corrections [2]. These
schemes were intended to evaluate discrete convolution
sums of the form

si= 1 w,K(x,-xi)

which appear in vortex methods [6]. Here xI E R’, d = 2 or
3, and K is the free-space Green function for -A or its
derivative. The fast multipole method, for example, is based
on multipole expansions (separation of variables), recur-
sion, and data structures. It evaluates (3) in O(N log N)
work if there are N of the points xi and N values of Sj are
desired, within an error tolerance E specified by the user. The

constant in O(N log N) depends on E and is quite reasonable
in two dimensions, where the method takes advantage of
complex analysis.

We also present fast algorithms for evaluating (3) with K
the Green function for a box B; these are much simpler than
our method for evaluating layer potentials, because they
need not address the issue of quadrature error. Our first
method for evaluating (3) is very fast, but its cost is
not always O(N log N); however, the deviation from
O(N log N) is small if the points x, are not too clustered. We
sketch a second method which is O(N log N), but we have
not implemented it.

The outline of the paper is as follows. In Section 2, we
derive the Ewald summation formulas for evaluation of the
Green function for -A with Dirichlet boundary conditions
imposed on the boundary of a d-dimensional cube. The only
analytical tool necessary is the Poisson summation formula.
In Section 3, we discuss quadrature errors in discretizing
layer potentials in d= 2 or 3 dimensions, using Ewald sum-
mation, Gaussian quadrature and product integration. In
Section 4, we present some background material on sub-
sidiary fast algorithms which we use in this paper. We give
brief descriptions of Rokhlin’s non-equidistant fast Fourier
transform, a scheme for evaluating Fourier series, and the
fast Gauss transform. Section 5 presents fast evaluation
schemes for evaluating layer potentials both on and off r.
These schemes evaluate the discretizations developed in
Section 3, to arbitrary accuracy and in O(N log N) time.
They also allow us in principle to make the quadrature error
arbitrarily high order if r and p are smooth enough. Sec-
tion 6 discusses how to use Ewald summation methods to
evaluate discrete sums like (3). The algorithm we present is
optimal only when sources are roughly uniformly dis-
tributed, but is usually very fast. We also sketch an optimal
algorithm for solving this problem. Section 7 discusses some
generalizations of our method-other potentials, other
Green functions, other equations-Section 8 presents
numerical results for two-dimensional versions of three of
the algorithms, and Section 9, our conclusions.

2. THE GREEN FUNCTION FOR A CUBE

This section presents derivations of the Ewald summation
formula for the Green function K(x, x’) of the Laplace
equation

-Au=f in B= [0, I]”

u=o on aB
(4)

in a d-dimensional cube B, with Dirichlet boundary condi-
tions specified on the boundary aB of B. The choice of
Dirichlet boundary conditions is arbitrary; we could just as
well use Neumann, periodic or mixed (but separable)

LAYER POTENTIALS AND DISCRETE SUMS 253

boundary conditions on JB. Our strategy is to relate (4) to
the heat equation and use a well-known transformation of
the heat kernel for B.

The heat kernel G(x, x’, t) for the corresponding
parabolic problem

a,v=Av in B

v=o on aB

v=f at t=Q

(5)

(6)

can be found by a d-dimensional Fourier since expansion:
the result is

G(x, x’, t)= 2d C epn21k12r sin r&,x, . ..sin rckdxd
kcNd

x sin nk, x’, . . sin nkdx;, (7)

where k = (k,, kd) runs over the set Nd of vectors with
d strictly positive integer components and lk12 =
k: + . . . + k:. This series converges exponentially fast when
t is large. The Poisson summation formula [9] (or the
method of images [20]) gives the complementary formula

G(x,x’, t)=(4nt)-““kFzi ,T+, o1 ..‘(~~e-‘~~~\-‘-~~‘*‘~‘,
/ ~

(8)

which converges exponentially fast when t is small. (Here
CTX’ = (a, x;) . ..) gdx;) and k runs over the set Zd of vectors
with d arbitrary integer components.)

We can integrate (5) from t = 0 to t = co and use (6) to
obtain

-A(j:v(x,l)dt)=f(x).

Thus U(X) = fz v(x, t) dt is the solution to the Laplace
equation (4). It follows that the Green function K(x, x’) for
(4) is given by

K(x, x’) = joz G(x, x’, t) dr. (9)

This translates-into the language of kernels-the operator
identity

This connection between the heat and Laplace equations
was used in [20], and doubtless in many other places. The
next step in our derivation is essentially equivalent to what

is known as “Ewald summation” in the physical literature
[1, 111. Split the time integral (9) at a cutoff time 6, sub-
stitute the Fourier series (7) for G(x, x’, t) when t >/ 6, and
replace G(x, x’, t) by (8) when 0 < t < 6. Thus we use each
of our two formulas for G(x, x’, t) in an interval of the time
axis where it converges exponentially fast. .The time
integrals can be evaluated exactly, and the result is the
following formula for K(x, x’):

fqx, x’) = K,(x, x’) + K,(x, x’), (10)
where

e--n21k126

K,(x, x’) = 2d c ~
k.c,!d 7C2 WI*

sin nk,x, . ..sin rck,x,

x sin nkl x’, . . . sin nk,x; (11)

and

&(x2 x’) = 4nd,* ‘,F;d o=c,, g1 ...o,Ix-ax’-2k12-d
z -

xT(d/2- 1, Ix-ax’-2k12/46). (12)

Here

J-(a,z)=ja e-“sup’&
i

(13)

is the incomplete gamma function. Its properties are
discussed in [lo]; we only need smoothness away from zero
and exponential decay: Ir(a, z)l < 2~“~ 1e-Z for ad 1 and
z > 0.

The Fourier series for K, converges exponentially fast: If
we drop all terms in which some ki is greater than a trunca-
tion parameter p, we incur an error E, bounded by

e
- n2k26 dk

if n*p*S 2 1. This can be summarized for d= 2, 3 as a
Fourier series truncation error bound:

(14)

The usefulness of K,, on the other hand, is not so much
that the series (12) converges exponentially fast-though it

254 JOHN STRAIN

does-but that the sum K, is exponentially localized in
space. Indeed, if x and x’ are inside B = [O, 1 I’, then one
commits an error which is O(e-‘16) in keeping only 3d terms
of the sum (12), corresponding to the nearest images of B.
If either x or x’ stays a distance D from aB, then K, is
approximated by one term with an error which is O(e-D2/4s)
as 6 + 0. This term is then bounded by

1
471”2 Ix-x’12-V(d/2- 1, lx-x’7/46)

This is exponentially small as soon as x - x’(> O($) in
/ two dimensions and Ix - x’l > 0(6 (log 6)) in three

dimensions.
Finally, we explain why Ewald summation is useful. If we

had computed K(x, x’) by a direct Fourier expansion, we
would have found

K(x,x’)=2d f
1

7 sin rck, x1 . . . sin nk,x,
ks,a,dn2 WI

x Sin nk 1 X; . . . Sin ?tk&& (15)

This series either diverges (if d> 3) or converges slowly (if
dd 2), so it is almost useless for evaluating the kernel. This
is because we are expressing high-frequency information
and low-frequency information alike as a Fourier series, so
we have to include many terms. If we had computed K(x, x’)
by the method of images, we would also have gotten a
useless expansion, because we would be trying to convey
global information by point evaluation. Instead, we have
constructed formulas which give K(x, xl) as a sum of two
series, KF and K,. The local information is carried by the
rapidly decaying local part K, and the global low-frequency
information is expressed in the Fourier series for KF. The
cutoff 6 indexes a one-parameter family of formulas for
K(x, x’), the Fourier series appears when 6 = 0, and the
method of images sum occurs in the limit 6 + cc.

Our fast algorithms are based on this splitting of K(x, x’).
Global information is encoded in the rapidly converging
Fourier series for KF, which can be evaluated rapidly
because the variables are separated. Local high-frequency
information is carried in K,, and K, decays very rapidly
away from its singularity-it decays like a Gaussian with
small variance. Hence convolution with K, is an almost
local operator, which can be applied rapidly.

3. DISCRETIZATION OF LAYER POTENTIALS S(x) =,f, s, K(x, x’) dx’) dx’ + O(hm), (16)

We now have the basic Ewald summation formulas we
need to evaluate layer and volume potentials. For sim-

plicity, we deal in detail only with the single layer potential,
in dimensions A = 2 and 3. We describe how to evaluate S,u
on and off r to accuracy O(V) in the size h of the mesh on
K We are mostly interested in the cases m = 2 and m = 4.

Our basic approach is as follows. We allow two types
of error. The first, quadrature error, occurs with all
approximate evaluation of integrals. It is O(P) as the size
h of the mesh on r decreases, with a constant in O(P)
which is allowed to depend on derivatives of the density p
up to some order M, possibly larger than m. This error has
to do with the discretization error in evaluating Sp with
Ewald summation, independent of the speed with which Sp
is evaluated. It does, however, depend on the splitting
parameter 6 and therefore on the number of terms p kept in
the Fourier series representation of S,p. The second type
of error is the price we pay for the fast evaluation scheme;
it is O(E), where E is a user-specified tolerance and the
constant in O(E) is not allowed to depend on derivatives of
p or r.

It is unrealistic in many applications to assume that r is
known exactly, say as a smooth parametrized surface. In
moving boundary problems, for example, we have to
approximate r by an object with finitely many degrees of
freedom. Thus our code has been written to operate on r
and ,U given as a union of elements r,, with maximum side
length bounded by h. In two dimensions, r is a union of line
segments if m = 2 and a union of cubic curves if m = 4, say
cubic Hermite interpolants to points on r and the
derivatives of Tat those points, for example. In three dimen-
sions, we take r to be a union of quadrilaterals if m = 2 and
if m = 4 we use images of rectangles under bicubics, say
Hermite interpolants or splines. See [14] for background
on surface representation and [29] for the effect on finite
element methods. On each element, ,D will be given as a
polynomial of degree m - 1, to accuracy O(P) if r and P
are of class C”. (We use quadrilateral elements in three
dimensions, rather than the more popular and versatile
triangular elements, mainly for convenience of exposition.
We need to take advantage of Gaussian integration rules
with their superalgebraic convergence. Such rules do exist
for triangles, for example conical Gaussian rules, so our
analysis can presumably be extended to triangular
elements.) We can treat many more general situations using
the techniques reported here, but have preferred simplicity
of exposition over generality for the time being. We aim to
keep the discussion on a concrete and practical level, with a
minimum of abstraction. If r and p are smooth, we have
then

where O(hm) depends on derivatives of r and p of order up

LAYER POTENTIALS AND DISCRETE SUMS 255

to m; see [22, 291 for error analysis. We now introduce the Generally, the error in evaluating the integral jAf(s) ds by
Ewald splitting such a rule is bounded by (see page 98 of [81)

= jr K,(x, x’) Ax’) dx’ + IT K,(x, x’) /.4x’) dx’,
where S, is a rapidly converging Fourier series and S, is
highly localized. We consider discretization of SFp and SLp
separately, and also separate the evaluation of SLp on f
from its evaluation at an arbitrary point x E B, which is not
known to lie on r. These two situations require completely
different strategies.

3.1. The Fourier Part

First we consider the evaluation of SFp. From (lo), we
have

. . sin nk,x, sin nkl xi . . . sin nk,x&p(x’) dx’

= 2d kFNd k P(k) sin nk, x, . . sin ‘tkdx,,

where the Fourier coefficients P(k) of the measure on B with
density p on r are given by

iW=jr sin nk, x’, . . sin nk,x&p(x’) dx’.

The error in truncation the Fourier series for S,p after
terms with ki = p is bounded by (Section 2)

where 1~1 i = jr Ip(dx’ and n2p26 2 1. If this error is to
be bounded, it is clearly necessary to have p26 bounded
away from zero as 6 + 0 and p + co. If d = 2 this condition
is sufficient; in d = three dimensions, p26 has to increase
logarithmically as 6 + 0 and p --) co, in order to balance an
additional power of 6 in the denominator. In two dimen-
sions, for example, this bound is less than 10e6 1~1, when
p26 > 1 and less than lOPi1 1~1, when p26 2 2.

Next, consider the error in evaluating P(k) by product
q-point Gauss-Legendre quadrature over each element rj.

1-W = Ij-;f(s) ds- i f(s,) wj)
J=l

I4

9 (2q 5) 2q!3 If (2y)l m

=0 ; *’ ID2qflz,
(>

where sj are the points and wj are the weights of the
Gauss-Legendre formula, D denotes differentiation, and
If 1 o. = max If (s)l. The second equality follows from
Stirling’s formula.

Our task now is to split this estimate, withf equal to a
product of sines times p, into O(hm) and O(E) parts, as
described above. By Leibniz’ rule, we have

x (sin nk I x’, . . . sin nk,x;) Djp(x’),

where D denotes differentiation. The two dominant terms in
this estimate are the endpoints, where all the derivatives go
onto one factor or the other. (The intermediate terms can be
bounded in terms of the endpoints by interpolation
estimates for intermediate derivatives and Holder’s
inequality.) Thus the 2qth derivative off can be estimated
by

O(~dph)2q lcll m + W2y),

where the first comes from differentiating the sines and the
second term depends on derivatives of p up to order 2q but
is independent of p. We will choose p and q depending on h
to make the first term less than E and the second term O(hm),
in Section 5.

We then will have each Fourier coefficient fi(k) for
1 < kj < p, with error E,. Thus evaluating S,p gives an
error bounded by

IEl6max lEkl 1
eazlk126

k&m

dmax lEkl CdIrn e-n2rZardp3dr
0

<max lEkl Cds’-d/2.

256 JOHN STRAIN

3.2. The Local Part Evaluated on r

We turn now to the evaluation of the local part

formula to be exact whenever g is a polynomial in t of degree
dn. Thus we have, from the definition of g,

S,P(X) = jr KAx, x’) /4x’) dx’
for x E r. More care is required in this case, because K, is

x G4,,p(x) + O(ecD2’4”),

infinite when x = x’. But we can use the known form of the
singular kernel to transform the integral in a manner

where the Gauss transform G,p(x) is defined by

convenient for evaluation. Write
G,p(x) = jr e~~~r~-x’~2/r p(x’) dx’.

K,(x, x’) = .r.” K(x, x’, t) dt Thus we need to evaluate n - 1 Gauss transforms with
r = O(6). Given G,p with error bounded by E, we get SLp
on r with error bounded by

=

s

6 e - Ix - x’l94t
D2/4S)

1. o (4zt)d/2 dt + Otep
lELl ~C,6’-d’2E+0(6”f3/2)+O(e~02~4”),

Here we assume, for simplicity, that dist(r, 8s) 2 D > 0 and
we can thus drop images when 6 is small. The images

where C, is a constant of order unity.

are nonsingular, and therefore represent only a notational
Now consider the evaluation of the Gauss transform. We

complication. Thus we have
have, as in (16)

S&x) = j; jr ‘;;;;;,;’ p(d) dx’ dt
G,p(x) =,i, jc e-lx r’12’r p(x’) dx’ + O(hm)

+ O(eCD2’46). for mth-order elements and interpolation. We approxi-
mate each integral over f, by product Gauss-Legendre
quadrature using q points per dimension. To estimate the

This is a single layer heat potential with density .U quadrature error, we need the 2qth derivative of the
independent of time. Write, for convenience, integrand. A calculation with Hermite functions shows that

roughly, we can estimate such derivatives by
e-lX-.x,12/41

d4 t) = jr (4nt)(d- ,),2 Pb’) dx’

g(x, t) dt + 0(e-D*/4a).

Then it can easily be shown [28] that

With Stirling’s formula, we find that the quadrature error
satisfies

.a t) -+ P(X) as t+OforxEr
Note that this estimate is essentially the same as (14) since

and g is a smooth function of t. Hence the only remaining z > S/n and p26 B constant. Finally, the quadrature error
singularity is the square-root singularity in the time integral, involved in evaluating S, p on r is thus bounded roughly by
and this is independent of x. Thus we can make a product
integration formula [183

-g(Xy t) dt =& i Wjg(x, rji)
j=O

As in the calculation of the Fourier coefficients, we have not
yet enough information to use this estimate, so we will

+ O(P + 3’2), return to the evaluation of S,p on r after introducing the
fast Gauss transform in Section 4 and balancing the work

with zj = jS/n, with weights wj determined by requiring the estimates in Section 5.

LAYER POTENTIALS AND DISCRETE SUMS 257

3.3. The Local Part Evaluated Off r

When x is not known to lie on r, the integrand in the
integral

S,Ax) = i‘, K,(x, x’) Ax’) dx’

may not be singular. It is smooth when x is not on r, but
blows up when x approaches I-. Paradoxically, this possible
lack of a singularity is quite troublesome when evaluating
S,p. This is because we cannot use a product integration
formula in time which is independent of x, and therefore
cannot express SLp as a sum of Gauss transforms.

We use instead a spatial product integration method to
evaluate SLp off r. This is particularly convenient in the
second-order case in two dimensions where the integrals
involved are fairly straightforward, so we give the details
only in this case. When higher order accuracy is desired,
product integration becomes difficult; however, the
approach suggested in [191 is an attractive alternative. A
local expansion as in [26, 131 could also be used effectively
here, because K, decays rapidly away from its singularity;
there is no far field.

In two dimensions,

and r, is the line segment connecting x, and xi+ I if rn = 2.
Thus

s K,(x, x’) p(x’) dx’
‘;

1 ’
=zc 0 i‘ (

r 0, Ix-tx~+l~~1-t)xj12) The evaluation of (17) amounts to finding the Fourier
coefficients of the periodic distribution f defined by

We have

r(0, Z) = -log(z) + F,(Z),

where F,(z) is entire. Thus we integrate the logarithmic part
of the kernel exactly over each line segment and apply
Gauss-Legendre quadrature to the remaining integral
involving F,(Ix- x’12/46) p(x’). The integrand of the F,
integral is an analytic function scaled by 113, so the 2qth
derivative grows no worse than 2q!Cy. Hence the error
estimate for integrating the F, term looks no worse than

by Stirling’s formula. This is therefore the complete error
involved in evaluating S,p in this case. Further analysis will
have to be postponed until we know how h is related to 6.

In three dimensions, a similar analysis applies. Only the
details of evaluating the singular term exactly are different.

4. BACKGROUND MATERIAL

In this section, we describe three fast algorithms which we
will use in the main body of this paper. First, we describe an
unpublished algorithm suggested by Rokhlin [ZS], which
evaluates discrete Fourier coefficients given function values
at arbitrary points. Then we describe a simple method for
evaluating a Fourier series at an arbitrary collection of
points. Finally, we describe the fast Gauss transform [121
which evaluates a convolution sum of d-dimensional
Gaussians. All three schemes are much faster than direct
evaluation of the corresponding sums, as soon as problems
of any reasonable size need to be solved.

4.1. The Non-Equidistant Fast Fourier Transform

Rokhlin’s algorithm evaluates the sum

f(k) = : eiujkf,
j= I

(17)

for k = 0, 1, 2, p, given N points ajE [-rr, rc] and N
complex numbers fj. Direct evaluation costs O(Np) work,
and the usual fast Fourier transform can be used only
when a, are equispaced. Rokhlin’s algorithm evaluates this
sum with accuracy EF in O((N+ p) logp) work, with a
constant depending on the user-specified precision E and
F=C,N_, l&l.

f(x) = 27c 2 6(x- aj)f,
/=I

(18)

on [- rr, rc]. A natural approach, if f were a smooth func-
tion, would be to evaluate f on an equidistant mesh and
apply a standard fast Fourier transform. This is impossible,
of course, because we cannot evaluate 6(x - a,) at a point.
Thus we smooth each point mass into a Gaussian, apply the
FFT, and undo the smoothing.

We define the smoothed function g approximating f by
requiring its Fourier coefficients g(k) to be given by

g(k) = e-““y(k)

258 JOHN STRAIN

Thus

Since

we have

g(x) = f e-y(k) e-i?
-00

f(k) = & j”, eikxf(x) dx,

not the trapezoidal sums (21). Fortunately, the explicit
formula (19) allows us to bound the quadrature error in

(19)
replacing continuous by discrete Fourier coefftcients. A
Fourier series calculation described in [IS] gives

It(k)- g(k)1 <2F(ep6(2q-p)2+ O(e-“(4ypp)Z))

if jkl 6~.
Finally, we can evaluatef(k) by unsmoothing:

f(k) = e’“‘g(k), Obkdp.

g(x)=&/1 K(x-x’)f(x’)dx’
n

where

= G f e-L-2kn)2/46.
--co

This will multiply any errors (including roundoff errors) in
the computation of g by a factor edk2 < e’J’*. The whole algo-
rithm will therefore be unstable unless 6p2 < c, where c is a
constant depending only on the precision desired. Thus we
tentatively set 6 = c/p’.

Now we must determine the parameters c and q to
achieve the desired accuracy and efficiency. The error in?(k)
for 0 6 k < p will be bounded by EF if the following three
conditions are satisfied:

The second equality is a well-known consequence of the
Poisson summation formula [9]. From the definition off,
we have

g(x)=m 5 f, 2 ep(x-“-2k”)‘/46.
j=l -cc

me- ,“F R*/463~ < Ee

(20)

37
2Fe ~ 6(2Y ~ P? < ce -‘F,

Since 6 will be small, we need only a few terms of the infinite
sum over k in (20): the error in keeping only three terms is
bounded by a e -& as long as 1x1 < rr.

Next we evaluate g on the equidistant grid x = jh with
-q < j < q, h = n/q. If we evaluate three Gaussians for each

j at each grid point, we do O(Nq) work, and we expect
q > p, so this costs too much. The rapid spatial decay of
the Gaussian, however, means that we need to evaluate
the Gaussian centered at aj only for Jx - aj I Q R, where the
range R depends on 6. The error in this truncation is
bounded by 3F&$ e - R2’46 If R = Lh, this evaluation .
will cost O(LN) work. We now have the values g(jh) on
an equidistant grid, so we can use the standard FFT to
evaluate the discrete Fourier coefftcients

t(k) = i

e2”jk”2qg(jh)

--Y

(21)

The first inequality comes from truncating the infinite sum
of Gaussians after three terms, the second from allowing aj
to influence only points x within a range R, and the third
inequality requires the quadrature error in evaluating g(k)
by the trapezoidal rule to be small. The total work required
by the algorithm is

wm + O(q loi% 9) + O(P).

The first term comes from evaluating Gaussians, the second
from applying the FFT to g and the third from evaluating$

First, we require c < 2 log 10; thus the final processing of
pcan lose no more than two decimal digits. This is a com-
promise between speed and roundoff error. The quadrature
error bound will hold if

. . or c = log E/(1 - (2q/p - 1)2). The requirement c < 2 log 10 __
in O(q log q) work. However, we really wanted the con- gives a lower bound for q/p;
tinuous Fourier coefficients

q/p 2 max(2, i + i Jl - 4 log a/log 10).

g(k) = & [y, e”“g(x) dx, For E > 10-16, this reduces to q/p >, 2. Thus c is determined

LAYER POTENTIALS AND DISCRETE SUMS 259

given q/p. Now let E’ = se -“/lOq (given q). We choose
R = Lh = Lnlq so that

(l/d) e - R2i46 d a’.

4.2. Evaluation of Fourier Series

Now let us consider the inverse problem: Given f(k)
for k = -p, -p + 1, p - 1, p, and N arbitrary points
a/- E [- rr, rr], evaluate the trigonometric polynomial

Thus
f(x) = i eik-y(k)

-P

= O(h log p). at the points a, in O((N+ p) logp) work, with error
bounded by &, where p= C If(k)\.

We choose q so that R d n; thus only three images need be Our approach is straightforward; we zero-pad the
kept, and the first requirement is satisfied as well. The total coefficients& to length 2q and perform a standard FFT of
work estimate now looks like length 2q to obtain 2q values

W=O(Nlogp+plogp+p)

= O((N+ P) log P).

f(jh) = i eq’y(k)
-P

This completes our description of Rokhlin’s non-equidistant
fast Fourier transform.

In practice, the algorithm performs extremely well. We
wrote a Fortran code implementing the algorithm and
tested it with a set of N points aj chosen from a uniform dis-
tribution on [-n, rr] andJj chosen from a uniform distribu-
tion on [0, 11. Table I shows the parameters, errors, and
times (T,) obtained with E= 10e7 and N= p= 16, 32, 64,
128, 256, 512, 1024, 2048. The times T, given for direct
evaluation are extrapolated from the time required for
direct evaluation at 80 points for the larger runs, and the
column headed TFFT shows the time required to execute one
standard FFT of size 2p. Thus we see that it costs only live
or six times as much to evaluate Fourier coefficients with
arbitrary points as it does to evaluate them with equidistant
points. The fast algorithm is much faster than direct evalua-
tion, breaking even at only about 16 points and coefficients,
and the error in the fast evaluation scheme is always
considerably smaller than the error bound.

on a fine grid on [-n, rc] with step size h = n/q. Then we
interpolate between grid points to obtain the desired values
f(a,) for 1 < j d N, with interpolation error <ai? It turns
out that we can guarantee such accuracy, for completely
arbitrary Fourier coefficients f(k), by taking q fairly large
compared to p and using fairly high-order interpolation.
Thus the algorithm turns out to be considerably more
expensive than a standard FFT whenfare randomly chosen
and high accuracy is desired. Of course, in most practical
situations, /are approximations to the Fourier coefficients
of a function and in that case much less work is required; an
example will occur in Section 5.1.

Let q = np; we will choose n and the order of interpolation
2k - 1 to make the interpolation error d &. In general, the
error in equidistant polynomial interpolation of a function
fat a point XE [0, 11, by polynomials of degree 2k - 1, is
bounded by

TABLE I

Results for the Non-equidistant FFT, with CPU Times on a Sun-4
Workstation

where I gl rx denotes the max-norm of g and

o,(x)= (x-OOh)(x- 1 .h)...(x-n.h).

N=P q 6 L T, Td T PFT Error/F

16 32 7.0-3 8 0.03 0.03 0.004 3.0-8
32 64 1.8-3 8 0.05 0.11 0.008 6.2-8
64 128 4.4-4 8 0.11 0.38 0.018 6.2-11

128 256 1.1-4 8 0.24 1.54 0.035 8.8- 12
256 512 2.7-5 8 0.45 6.22 0.077 7.3- 12
512 1024 6.8-6 9 0.95 25.0 0.16 5.9- 14

1024 2048 1.7-6 9 1.93 100.3 0.34 2.9- 14
2048 4096 4.3-7 9 4.01 401.4 0.67 3.0- 14

We use interpolation only on the center interval
kh <x d (k + 1)h; then

Iw*~- ,(x)1 d $h2k(k!)2.

By Stirling’s formula,

(k!)2 fi
(2k)!Z2’k’

581/99/Z-6

260 JOHN STRAIN

TABLE II

Error Bounds for Fourier Series Evaluation, Using a Mesh Ratio
n and Polynomial Interpolation of Degree 2k - 1

2k- I II = 3 It=4 tt=6 n=8 n=12 n=16

3
5
7
9

11
13
15
17
19

0.27E+OO 0.15EiOO 0.69E-01 0.39E-01 O.l7E-01 0.96E-02
O.lOE+OO 0.32E-01 0.63E-02 0.20E-02 0.39E-03 O.l2E-03
0.33E-01 0.59E-02 0.52E-03 0.92E-04 0.80E-05 O.l4E-05
O.lOE-01 O.lOE-02 0.40E-04 0.40E-05 O.l6E-06 O.l6E-07
0.3lE-02 O.l8E-03 0.3lE-05 O.l7E-06 0.30E-08 O.l7E-09
0.94E-03 0.30E-04 0.23E-06 0.73E-08 0.56E- 10 O.l8E- 11
0.28E-03 0.50E-05 O.l7E-05 0.30E-09 O.lOE-11 0.18E-13
0.81E-04 O.SlE-06 O.l2E-08 O.l2E-10 O.l9E-13 O.l9E-15
0.24E-04 0.13E-06 0.90E-10 0.5lE-12 0.34E-15 O.l9E-17
0.68E-05 0.22E-07 0.65E- 11 0.2lE- 13 0.62E- 17 0.20E-19

and in general the best we can say about the 2kth derivative
off is

Ipk)l co Q pv,

SO

since h = n/q = n/rip. Table II shows this error bound (with
the factor fi omitted) as a function of k and n. Single preci-
sion accuracy (E = lo-‘) requires 19th-degree interpolation
with n = 4, 1 lth with n = 8, and 7th with n = 16. Double
precision accuracy (E = lo- 13) requires 19th-degree inter-
polation with n = 8 and 13th-degree with n = 16. In practice,
we found interpolation of degree higher than about 20 to
lead to substantial rounding errors. We evaluated the inter-
polating polynomial by Aitken’s algorithm.

Given n, one can find k by requiring (n/2n)2k <E or
2k > -log .z/log(2n/lr). Table III shows numerical results
obtained from testing the algorithm on randomly generated
Fourier series coellicients and points of evaluation as in Sec-
tion 4.1, with error tolerance E = 10-5, n = 8, and 7th-degree
interpolation. The error bound is quite sharp, and even in
this fairly dillicult case, the algorithm breaks even at only
about 32 points and coefficients. These choices of n and k

TABLE III

Times and Errors for Evaluating Randomly Generated Fourier
Series with E = 10m5, n = 8, and 7th-Degree Interpolation

N==p Fast Direct Error/i

16 0.07 0.03 1.5-6
32 0.11 0.12 X.6-7
64 0.25 0.49 9.7-7

128 0.48 2.0 9.6-l

256 1.0 7.9 1.1-6
512 2.1 31.2 1.7-7

1024 4.2 126 2.5-l
2048 8.4 502 1.2-7

are not optimal, of course; in practice the choice of n and k
will be a trade-off between speed and memory, especially for
multidimensional problems.

Finally, we observe that both the scheme presented in this
section and Rokhlin’s algorithm generalize immediately
to higher-dimensional problems. They are not tensor pro-
ducts as are standard FFTs, but the generalization is
straightforward nonetheless. In the numerical calculations
of this paper, we use schemes which evaluate two-dimen-
sional Fourier sine coefficients and Fourier sine series with
non-equidistant points; these are also straightforward
generalizations of the schemes presented in this section.

4.3. The Fast Gauss Transform

In this section, we very briefly summarize the fast Gauss
transform presented in [123. Consider the evaluation of the
d-dimensional Gaussian sum

at M points x = ti E B = [0, 11”. Here sj are N given points
in B, fj are N given real or complex numbers, and 1x1 2 =
XT + . . . + x$ Clearly direct evaluation takes O(NM) work.
The fast Gauss transform requires O(N + M+ 6 -d/z) work
to evaluate (22) to precision EFwith F= C If, (; the constant
in O(N + M+ ded’*) depends only on E. In practice, the
algorithm achieves a tremendous speedup over direct
evaluation when M and N are large and 6 is not too small.
When 6 is very small, the fast Gauss transform reduces to a
structured and truncated direct evaluation scheme which
takes advantage of the short range of influence of each
source s, .

The basic approach combines separation of variables
with a divide and conquer approach, as in the fast multipole
method [S]. We divide the box B into O(6-d’2) boxes of
side O(6) d an sort the sources sj and targets t, into boxes
by spatial location. The influence of all sources in a given
box can be combined into a single Hermite expansion about
the center of the box. Each Hermite expansion influences a
fixed number of boxes within range O(d), by adding to
the Taylor expansion off about the center of each target
box. Finally, the Taylor expansion is evaluated at each
target in the box. A decision analysis ensures that Hermite
expansions are formed and Taylor expansions evaluated
only when it is efficient to do so; otherwise, box-box inter-
actions take place directly or semi-directly.

The analytical apparatus required for the algorithm can
be summed up in the rapidly converging series expansion

LAYER POTENTIALS AND DISCRETE SUMS 261

TABLE IV

Table of Cost and Errors for the Two-Dimensional Fast Gauss
Transform with S = 0.01 and E = 10 -6, with Targets and Sources
Spaced Uniformly on a Circle

Case N=M Fast Direct Error/F

2
3
4

6

8
9

10
11

100 0.500 0.460 0.479E -09
200 1.540 1.840 0.447E - 06
400 2.060 7.400 0.499E -06
800 2.370 29.600 0.737E-06

1600 3.180 117.920 0.749E - 06
3200 4.320 486.080 0.755E -06
6400 6.930 1953.280 0.199E-06

12800 11.080 7686.400 O.l99E-06
25600 19.690 30397.440 O.l99E-06
51200 36.700 123141.120 0.2OOE - 06

102400 72.130 485406.720 0.200E - 06

Here x, y, z lie in Rd, while o! = (a,, ad) and
B = (PI, ‘..Y Pd) are multiindices with positive integer
elements x1 = xa’ . . . xad and h, is the d-dimensional
Hermite’ functio$ whi% decays like a Gaussian as (zl
increases. Thus the influence of sources sI in a box B with
center sB on targets ti in a box C with center t, is given by

.fsc(t)= c 9 c h,+l,(tc-sB)
220

x c (s,-s:);”

J,E B fi! ’

This is a Taylor series about tc. Its coefficients are formed
by taking moments of the 3;s about sB, summing overj, and
transforming with a matrix multiply. One accumulates the
Taylor coefficients due to all boxes B influencing C before
evaluating. Accuracy is obtained by adjusting the number of
terms retained in the sums over GI and fi. These sums con-
verge extremely fast, so not very many terms are necessary
in order to achieve quite high precision.

Table IV presents numerical results for a two-dimen- ,
sional fast Gauss transform, with E = 10e6 and 7’ terms
kept in the Hermite series. These results show that the fast
transform is never much slower than direct evaluation (for
Ng 100) and achieves tremendous speedups when N is
large. The time required for evaluating the sum of 100,000
Gaussians at 100,000 points is reduced from a week to a
minute by the fast Gauss transform.

5. RAPID EVALUATION OF LAYER POTENTIALS

with optimal efficiency. From Section 3, we know that it is
natural to consider separately the case when the evaluation
point x is restricted to lie on r and the case when x lies
anywhere in B, either on or off f. The applications make it
natural also to consider two even more specific cases: First,
in Section 5.1, we describe how to evaluate Sp(x) at the N
points xj on r where the values of p were originally given.
This is the essential part of solving for p on r by an iterative
method. We carry this out by using product integration in
time and the fast Gauss transform to evaluate the local part,
and non-equidistant FFT methods to evaluate the Fourier
part. Optimal efficiency then dictates a certain balance
between 6, p, and the mesh size h.

Second, in Section 5.2, we suppose /* given on each
element and evaluate Sp(x) on an equispaced grid in B,
in other words at the points x= (i,H, i,H) with
0 < i,, i, d M and H = l/M. We assume the grid is coar-
ser than the mesh on I-, that is H 2 h, as this eliminates a
tiresome consideration of cases and is the case in almost all
applications. In this case, we evaluate the Fourier coef-
ficients using the non-equidistant FFT and evaluate the
Fourier part on the grid with a standard FFT. (If the grid
were irregular, we could still construct an optimal algorithm
by using the Fourier series evaluation scheme of Sec-
tion 4.2). The local part is done by product integration with
a cutoff, which takes advantage of its rapid spatial decay, as
in Section 3.3. Optimal efficiency now dictates a different
relationship between p, 6, h, and H.

5.1. Evaluation of Sp on r

First split Sp = S,+ + S,p with 6 to be determined, and
truncate S,-p after terms with ki= p. Then we need to
evaluate pd coefficients

fi(k) = J, sin nk,x; . . . sin nk,x;p(x’) dx’,

in O(N log N) work, with accuracy O(hm) +E. If we use
product q-point Gauss-Legendre quadrature on each
element r,, we obtain an expression of the form

P(k)= $ c sin xk,xj, . ..sin nk,xj,pjw,.
j=l i

This can be evaluated with the non-equidistant FFT
(extended to do the d-dimensional sine transform) in
0((q”N + pd) log p) work and with accuracy EF, where

In this section, we present our new algorithms for
evaluating the discretized single layer potential

x, x’) p(x’) dx’ This suggests that we take p = O(N”d) and the Fourier
series truncation error requirement (that p26 be bounded

262 JOHN STRAIN

away from zero) suggests then that 6 = O(N -‘Id). In d
dimensions, having N elements on r with maximum size h
means roughly that h = O(N”” Pd’), because r is (d- l)-
dimensional. Hence 6 and h are related by 6 = O(h2-2’d),
and p = O(h’ldP’). The error estimate for Gauss-Legendre
quadrature presented in Section 3.1 is then dominated by

= O(,?,-d-*ld+*qld).

Thus we obtain order m accuracy uniformly in 1 6 ki 6 p if
wetakeq>d(m-3+d+2/d)/2.Ford=2,weneedq=m,
while in three dimensions we need q = 1 + 3m/2. The con-
stant in the error estimate is quite small; for example, drop-
ping factors of C IpI m, itis 1.30whenm=d=2,6.6x10P3
when d = 2 and m = 4, and generally speaking,

md

h”.

We can now evaluate the truncated Fourier series at the
N points xi, to obtain

I, ---n2ik12h

where the error E is of order

We do this by the Fourier series evaluation scheme of Sec-
tion 4.2, extended to d-dimensional sine series, in other
words, by evaluating S,p on a line mesh with mesh size
H = l/rip and interpolating to each xj with tensor product
polynomial interpolation of degree 2K- 1. The error in this
procedure is bounded by

where

is a smooth function. Comparison of the derivative of the
sum with an integral shows that

where Cd is a constant of order unity, depending only on the
dimension d. Thus

In two dimensions, this bound can easily be made less than
E with choices of n and K which are independent of N; in
three dimensions, n and K may have to increase logarithmi-
cally with N. Typically n* z 10 and p26 3 1, so this error
bound is < 10e6 when K= 4 (7th degree interpolation) if
c IPI 1 G 1.

Thus if we choose p and 6 with

e ~ &A

4op3@d+ 1)/2 d&Y

p = O(N ‘ld), and 6 = O(N -*Id), we can evaluate SFp on r
in O(N log N) work with accuracy O(hm) + E J,ul,; the
constant in O(N log N) depends only on log E.

Next we turn to the evaluation of the local part

S,Ax) = 1,6 jr K(x, x’, f) Ax’) dx’.
We use the product integration in time approach developed
in Section 3.2 to reduce the problem to n Gauss transforms:

+&i ,= I (4nr,;- 1 v7 G47,@)

+ O(cY + 3’2).

Since 6 = O(h2P2’d), the error term looks like
O(h(2P2’d)(“f3’2J) = O(hm) if n 2 (m - 3 + 3/d)/(2 - 2/d).
When d = 2, we need to have n >, 1 or n 3 3 for second- or
fourth-order accuracy, respectively, while in three dimen-
sions, we need only n > 0 or n > 2, respectively. Thus in
three dimensions, the simple approximation

is already correct to second-order accuracy-and certainly
very inexpensive to evaluate. In the other cases, we need
to evaluate Gauss transforms to accuracy E’ = 6’ Pd’2.s
plus O(h”‘). The quadrature error in product q-point
GaussLegendre quadrature for each Gauss transform is,
from Section 3.2,

e nh2 y E=C~1-d/* -- (> 329 6 IPI02

We now know that 6 = O(h* ~ *Id), so this estimate is equiv-
alent to

E=O(h 2yld+3Sd--2/d).

This is O(h”‘) if q 2 (md- 3d + d* + 2)/2. If d = 2 we need
q>mwhileifd=3weneedqa3m/2+1.

The fast Gauss transform now evaluates S,p on r
in O(N log N + 6-d’2) = O(N log N) work, to accuracy 8’.
Thus we can evaluate S, = SFp + S,P efficiently and
accurately.

5.2. Evaluation of Sp off r

We now consider the evaluation of Sp, discretized with N
elements of size d h, on a mesh in the box B containing Q.
For concreteness, we consider an equally spaced mesh
x = (i/M, j/M, . ..) on B; the more general case is an easy
extension using the Fourier series evaluation scheme dis-
cussed in Section 4.2. We assume for simplicity that the
boundary discretization is no coarser than the mesh, so that
h < H = l/M. The other case rarely occurs in practice and is
easy to deal with when it does occur.

We allow ourselves 0((N + Md) log M) work to evaluate
Sp on the grid; clearly this is optimal, up to a logarithm.

First we truncate S,p after terms with ki= p. The
resulting series will cost O(M”log M) to evaluate on the
mesh, so we might as well take p = M and 6 = O(M P2),
with p and 6 chosen to make the Fourier series truncation
error d E /PI I. Now we need to evaluate Md Fourier coef-
ficients b(k) with 1 < ki < M. The fast algorithm error is
bounded by (Section 3.1)

24
b-4,

for 1 < ki < M. Since Mh f 1 by assumption, we have

which can easily be made <E by choice of q. For example,
~=10~~andd=2requiresq37,while~=10-’~andd=3
still requires only q B 11 if C (~1 oc is of order unity. In prac-
tice, even a much smaller value of q suffices, because the
Fourier series is dominated by lower terms for which
Ikl h < 1 and often we even have Mh 4 1. Once we have
the Fourier coefficients b(k), we multiply them by the
appropriate Gaussian factors and evaluate SFp on the grid
with a standard FFT. If the grid were non-equispaced, we
would apply the Fourier series evaluation scheme of
Section 4.2. We have now evaluated S,p on the grid at a
cost of O((N + Md) log M) work and with an accuracy of
0th”) + E.

LAYER POTENTIALS AND DISCRETE SUMS 263

Now we turn to the evaluation of the local part SLp(x) on
the grid. This can actually be done in O(N log M) work, as
it turns out. The key observation is that 6 = O(M -*) and S,
decays to less than E outside a tubular neighborhood of r
having radius O(G)= 0(1/M). Thus each of the N
elements off affects a number of grid points which depends
only on log(a/M), leading to O(N log M) work as N and M
increase.

To be precise, suppose that we can ignore images so that
K,(x-x’)=(1/4rP*) Ix-x’12-dT(d/2- 1, Ix-x’l*/46).
Then a point x at distance D = dist(x, f) from rhas S&x)
bounded by

x r(d/2- 1, Ix-x’1*/46)cl(x’)dx’

from Section 2. Suppose for conceteness that 6 = M -2, so
the Fourier series truncation error is about E = 10V5. Then
this error bound is below E (~1 i when D > K/M, where K > 6
in two dimensions. Thus, to single precision accuracy, S,p
is zero when x lies more than six grid spacings from r.
Hence each point on r can affect at most 13d grid points.
The general case is similar.

Including images presents no additional difficulty,
because they are subject to the same estimate. Only 3“
images need be included, and even these matter only if r
comes very close to aB.

Thus we need evaluate S,&x) only at O(N log M) grid
points near IY When we do evaluate it, we use the scheme
described in Section 3.3, evaluate the singular part of

Ix-x’l*-‘Z-(d/2- 1, Ix-x’12/46)

exactly over each element, and apply Gaussian quadrature
to the remainder. The singular part is a logarithm if d = 2
and Ix - x’l --I if d = 3; it can be integrated exactly over a
linear element to obtain second-order accuracy and quite
likely over a cubic element for fourth-order accuracy. See
[7] for some discussion of the difficulties involved.
(Actually, if 6 = O(H*) as is often the case, then one need
only use quadratic elements in the evaluation of the local
part to obtain fourth-order accuracy and zero-order
elements to obtain second-order accuracy, because S,p is
itself of size O(h).)

JOHN STRAIN 264

The smooth part can be integrated by Gaussian quad-
rature with an error bound that looks like (Section 3.3)

At the very worst, we will have h 6 l/M
whereupon

and 4= 1/M,

Thus q 2 6 gives single precision and q > 10 gives double
precision accuracy assuming C 1~1 co is of order unity.

We have now evaluated SLp off r to accuracy O(hm) + E;
hence we can add together S,p and S,p to obtain the
full single layer potential Sp off I-, evaluated in
O((N+ Md) log M) operations, with the same order of
accuracy.

6. DISCRETE SUMS

In many calculations Cl, 61, one needs to evaluate a
discrete sum of point sources

S(i) = ;r PjK(Xi, Xi), 1 <i,<N, (23)
j=1

where the prime on the sum indicates that thej= i term is
to be omitted. Here xi are distinct points given in
B= [0, lld and K is a Green function for -A with
boundary conditions imposed on dB. Direct evaluation of
this sum costs O(N*) operations since one must sum up
N - 1 sources for each target i. We present an algorithm
which evaluates (23) much more efficiently.

First, we describe a method which is optimal only when
the points xi are distributed over B in a fairly uniform way.
When the xls are uniformly distributed on a lower-dimen-
sional set as N+ co, the algorithm is no longer optimal,
but is still very fast; in numerical examples, it achieves
tremendous speedups over direct calculation. The work
estimate of the algorithm depends on the Hausdorff dimen-
sion D of the set where the x,‘s concentrate as N -+ co.

We also sketch an 0(N log N) algorithm, which we have
not implemented. It requires more complicated analysis and
some new special function theory, which will be discussed
elsewhere.

Method 1

Suppose for concreteness that K is the Dirichlet Green
function for B, as described in (2). Then we have the Ewald
splitting

S(i) = S,(i) - prK,(xi, x,) + S,(i).

Here

where

x sin nk, xi, . . . sin nk,x, + E,,

N

fi(k) = c ,ui sin nk, x, , . . . sin nk,x,,
i= I

and E, satisfies the Fourier series truncation error bound

where M = C [CL, I. The second term must be subtracted
because our original sum excluded the term with j= i. The
local part is given by

S,(i)= ’ m it 1 +Ix,-~,12-d
,= 1 mlages

where we keep only 3d images Zj of each point xi, those lying
in the image boxes adjacent to B, and the error EL in
discarding the rest of the images is bounded by

with a constant C, of order unity. We consider each of the
three terms forming S(i) in turn.

First, it is clear that we can evaluate the Fourier part
S,(i) with the methods of Sections 4.1 and 4.2. This will
require O((pd + N) logp) work to produce accuracy &M/3,
say, if p and 6 are chosen to make the Fourier series
truncated after pd terms accurate to &M/3. This requires
that p26 be bounded away from zero.

Next consider the subtracted term

-n*lkp6
PJAx,, xi) = dd i ‘7

k,=, 71 14’
x sin’ nkl xi1 . . . sin* nk,x, + Es,

where E, satisfies the same estimate as E,. At first glance,
this term seems trivial, because each point X, interacts only
with itself. Unfortunately, K,(x;, xi) depends on 6 and we
have to sum up pd values to evaluate KF(x, x) at each value
of x. Thus it looks as though this term would cost O(pdN)
which would be far too much.

Fortunately, it turns out that KF(x, x) can be evaluated
by a fast method very similar to the Fourier series evalua-

LAYER POTENTIALS AND DISCRETE SUMS 265

tion method of Section 4.2. We evaluate K,(x, x) on a fine
mesh in B and interpolate to each desired value of x. The
line mesh evaluation must be done efficiently (though it
could of course be done once and for all for each 6 and
stored permanently) and for this we need to observe that

4 sin* x sin’ y = 1 - cos 2x - cos 2y + cos 2x cos 2y

or the analogue in higher dimensions. Thus K,(x, x) can be
evaluated on a regular grid by zero-padding and fast cosine
transforms.

Finally, consider the local part. Here, the essential feature
is rapid decay. Choose R = R(6) so that

then R = O(d) up to a logarithm. Then the local term is
less than ~A413 whenever Ix - x’l > R. Hence each point x,
only influences points xi with Ix; - x., 1 < R. The assumption
that the x,‘s are uniformly distributed on a set of Hausdorff
dimension D as N --* cc means then that each xj can
influence only O(RDN) points as N + co, so we can limit the
sum to such points.

In practice, this needs a little further work, because we
want to exclude the influence of distant points xj without
computing the distance to each point. (The latter would cost
O(N2) work which would be too much.) This can be done
by the standard technique of organizing the points into
boxes of size 2 R and allowing points in one box to interact
only with points in the nearest neighbor boxes. This tech-
nique also allows easy inclusion of images, by using an
extra layer of fictitious boxes outside B.

Hence the total work required to evaluate S,(i) for
l<i<Nis

O(RDN2) = 0(SD12N2).

Now we can minimize the total work,

W= O(pdlog N+ Nlog N+hD’*N2),

subject to the constraint that p26 is bounded away from
zero. The result is

W= O(N” log N),

where u = 2/(1 + D/d). Clearly o! = 2 when D = 0 (points
converge to a finite set of points as N -+ co), while u = 1
when D = d. Thus the algorithm is optimal if the points xi
cover B in a reasonably uniform way when N + cc. An
interesting intermediate case is when the xi)s are uniformly
distributed over a hypersurface, so D = d- 1. Then we find
LX= 2/(2 - l/d). In two dimensions this gives us an

O(N4j3 log N) algorithm while in three dimensions we get
an O(N6’5 log N) algorithm. Thus the algorithm differs little
from an O(N log N) algorithm in this case; the ratio N 1’3 is
less than 100 for N < 106, while N ‘I5 is bounded by 10 for
N d 105. In practice, these methods achieve large speedups
over direct evaluation.

Note that we were able to do better than this when the
sources were distributed on a hypersurface, in the con-
tinuous case when the discrete problem corresponded to
quadrature of a layer potential. This is because in the con-
tinuous case, we were able to classify certain parts of the
error as quadrature error; we do not have this option when
evaluating discrete sums.

Method 2

As we have seen, the difficulty in making an O(N log N)
algorithm is due to the local part S,(i). One needs a
multipole-type expansion which separates the variables
yet-unlike multipoles-preserves localization. Such an
expansion can be constructed by integrating the Hermite
expansion which was used to construct the fast Gauss trans-
form. Begin with the expansion [123

Ignoring images temporarily, we have

Combining these two expressions gives an expansion

K,(x - y) = m;, 5 j; (47~~‘~
, .

This expansion can be used in the same way as (24) was
used in the derivation of the fast Gauss transform, if
allowances are made for the singularity of the functions g,.
The technique required to make these allowances is
precisely the same as in the fast multipole method [S], but
with the substantial simplification of localization; K,(x - y)
decays rapidly as lx - yl increases. Images are included (if
necessary) in the obvious way.

This scheme is theoretically elegant-and practical
compared to direct evaluation-but it seems unlikely to be
competitive with Method 1 except in situations unlikely to

266 JOHN STRAIN

occur. Thus we did not implement or test it in this paper. It
will be discussed in a future publication if it turns out to be
practical.

7. GENERALIZATIONS

We have presented fast algorithms which evaluate a
discretized version of the single layer potential with an
arbitrary order of accuracy, in an essentially optimal
amount of computational effort. Different approaches are
used to evaluate Sp on and off f, corresponding to the com-
mon situation where one solves an integral equation on r
by iteration, then evaluates the potential of the resulting
density p on a grid in the domain 52.

Our algorithm can immediately be generalized to solve
many other problems which arise in practice. We list some
examples.

1. The modifications needed to evaluate double rather
than single layer potentials are straightforward. This is
important in practice because one usually solves a standard
Dirichlet or Neumann problem on B by converting it to an
integral equation on r, in which the integral operator is the
nonsingular part of either the double layer or the normal
derivative of the single layer. Thus one often needs to apply
such an operator efficiently on r.

2. One can easily modify the analysis to handle poten-
tials formed with other Green functions for -A on a cube;
for example, the periodic Green function is dealt with by
replacing sine series by exponential Fourier series. This is
useful in periodic computations with interfaces.

3. Volume potentials V’ can be evaluated, say on a
regular M x M grid in 13, using the values off on the grid
points lying inside Q. The work estimate is 0(Md log M) on
a Md-point grid. The only new piece of work that must be
done is to do product integration over d-dimensional
elements on Q rather than (d- 1)-dimensional ones on r.
Much benefit is derived from the fact that the local part VJ
is O(h2) to begin with; thus quadratic approximation off
gives fourth-order accuracy, and second-order accuracy can
be achieved by dropping the local part altogether.

4. The same approach can be used to produce fast
solvers for boundary value problems for any elliptic
equation or system which admits a potential theory. An
important example in applications is the stationary Stokes
equations, for which the fundamental solution is known and
Ewald summation has been described in [lS]. (Boundary
element methods for this problem have been constructed,
e.g., in [16].) The analysis goes through in the same way,
and the result is a fast solver for the Stokes equations in a
bounded domain or for Stokes flow with interfaces.

5. Precisely the same generalizations can be made for
the discrete sum algorithm of Section 6.

8. NUMERICAL RESULTS

We programmed two-dimensional versions of three of the
algorithms presented in this paper and tested them on
examples. The computations were done in double-precision
arithmetic in optimized Fortran on a SPARC station 1 or a
Sun-4 workstation.

The results are quite satisfactory; all three algorithms are
much faster than direct evaluation schemes for large-scale
computations, while the overhead is small enough that it is
feasible to use them for very small calculations as well. They
break even at a very small number of points and achieve
dramatic speedups for large jobs. The O(Nlog N) and
0((M 2 + N) log N) time estimates for the evaluation of the
single layer potential on and off f are verified by the
numerical results. The discrete sum algorithm exhibits
linear time requirements when the points are uniformly dis-
tributed and O(N4j3 log N) when the points lie on a curve,
as predicted. In both cases, a considerable speedup is
obtained, even when N is as small as 160.

The accuracy of all three calculations is excellent. The
layer potential calculations were clearly second-order
accurate or better, while the discrete sum evaluation scheme
achieved the error tolerance desired and was substantially
more accurate than direct evaluation when the number of
points was large.

8.1. Layer Potentials Evaluated on r

We tested the algorithm of Section 5.1 on two examples,
the first for accuracy and speed, the second only for speed,
and compared it with a direct evaluation scheme. In the
direct method, the same discretized single layer potential is
evaluated on r by direct summation. Thus the direct
calculation already uses separation of variables, product
integration in time, and Gaussian integration over each
element. We programmed it also to evaluate Gaussians
only when they were above the cutoff E.

In this type of experiment, a standard time-saving proce-
dure is to use the direct calculation to evaluate the potential
only at 100 of the N points on r The resulting CPU time is
then multiplied by N/100 to obtain an estimate of the time
Td the direct calculation would require to carry out the
entire calculation. In our present situation, the direct
calculation still has to evaluate all the Fourier coefficients
even if only 100 values of Sp are desired. Thus the
standard procedure would punish the direct calculation
unfairly. Hence we compared our results with the full direct
calculation, as long as the time required did not try our
patience, and estimated the time required for larger direct
calculations by extrapolation. In other words, we multiplied
Td by 4 whenever we doubled N. This procedure tends to
produce conservative estimates.

In our first numerical example, we took r to be an off-

LAYER POTENTIALS AND DISCRETE SUMS 267

center circle, with radius 0.13 and center at (0.4, 0.7)
parametrized by 06 86271, and we took the density
~(0) = 10k cos(kO), with k = 3. We tested the algorithm with
various values of k between 1 and 10; the results we report
were obtained with k = 3, but they would be little different
in form for other cases. The main difference is that the
asymptotic second-order accuracy takes longer and longer
to be reached as k is increased, because it takes more and
more points to resolve the rapid variations in p. The poten-
tial Sp is of order unity, and is plotted in Fig. 1. It can be
evaluated essentially exactly by numerical integration, and
the accuracy of both fast and direct evaluation schemes
compared to an exact solution.

The numerical parameters N, p, and 6 are reported in
Table V. We set the tolerance E to lop4 initially and reduced
it by a factor of 4 at each step. This is because it would have
been pointless to demand an accuracy of evaluation much
less than quadrature error could reasonable be expected to
be. The parameters 6 and p were chosen so that
e- n2p2”/50p363f2 < F initially (when N = 20) and then refined
by factors of 1.5 and 0.5, respectively, as N was doubled. We
used n = 1 level of product integration in time, q = 2 points
for Gaussian quadrature on each element to evaluate the
Fourier coefficients, and q = 2 points per element to
evaluate the Gauss transform. The Fourier series evaluation
scheme used a line mesh of size 3p and fifth-order interpola-
tion. The fast transform parameters were tested by relining
them to see that they made no significant difference in the
error in the numerical solution.

The numerical results are shown in Table V. The timing
runs were made on a SPARC station 1 with the FORTRAN
optimizer; this is about a one-megaflop machine. The
columns headed T1- and Td give respectively the time
required for the fast algorithm to evaluate Sp and the time
required to evaluate Sp directly at all N points. It is clear
that the fast algorithm is much faster than direct evaluation
for large jobs and breaks even for a surprisingly small
number (between 20 and 40) of points on the curve. With
10,000 points on the circle, the fast algorithm is over

TABLE V

Results of Evaluating (on the Circle) the Single-Layer Potential of
30 cos 38 on a Circle

Case N p 6 4 Ed T, 7-d

I 20 9 0.0 1024 0.478 0.478 0.29 0.21
2 40 13 0.005 12 0.202 0.202 0.57 0.80
3 80 19 0.00256 0.572E ~ I 0.573E ~ I 1.09 3.35
4 160 28 0.00128 O.l19E- 1 O.l19E-1 2.40 14.11
5 320 42 0.00064 0.218E-2 0.218E-2 4.51 61.61
6 640 63 0.00032 0.379E - 3 0.3798 - 3 10.15 249.38
7 1280 94 OMKI16 0.645E-4 ** 20.42 985.76
8 2560 141 O.OWO8 O.lOSE-4 ** 41.56 3943.04
9 5120 211 o.O+xQ4 O.l66E-5 ** 93.02 15772.16

IO 10240 316 o.OocQ2 0.264E-6 l * 192.75 63088.64

300 times faster than the direct calculation, taking 3 min
rather than 17 h.

The columns headed El-and E, report the maximum error
measured in 200 randomly chosen values of S,U on r, for the
fast and direct computations, respectively. Asterisks
indicate cases for which we did not obtain the error in the
direct calculation because we did not run it. Once the
oscillations in the solution are well-resolved, the error in the
method is clearly at least second order. There is no
appreciable difference between the errors of the fast and
direct calculations, because the quadrature error dominates
the error due to the fast evaluation schemes. One feature of
the error which is not apparent from the tables is that the
relative error is small, as well as the absolute error. In places
where the potential is small, the error is also small; the
potential has roughly the same number of correct significant
digits in all places.

Next, we ran a computation with a more complicated
boundary just to see how much faster the fast algorithm
would be in a more realistic situation. In this case, we took
r to be the union of four circles, modelled on a typical
problem in crystal growth [27,28], and p to be 20 cos 28
on each circle. More applications to crystal growth will be
reported in future publications. The single layer potential is
shown in Fig. 2. The timings given in Table VI were
obtained with the same parameters that were used for the
previous example, but this time we did not measure the
error. Study of the results at selected points suggests,
however, that the error is quite similar to the previous case,
so that we achieve 1% accuracy with N = 640 points dis-
tributed over the four circles. The fast algorithm is then
about nine times faster than the direct evaluation; it is never
slower, and soon becomes much faster as the mesh is
relined. With 20,000 points, it is 240 times faster than direct
evaluation.

8.2. Layer Potentials Off r
In the next pair of examples, we tested the evaluation of

Sp on a regular grid of size M x M, for the potential of a

TABLE VI

Time Required to Evaluate (on the Circles) the Single Layer
Potential of 20 cos 20 on four circles

Case N P 6 Tl T‘i

1 80 9 0.01024 0.79 1.05
2 160 13 0.00512 1.43 4.18
3 320 19 0.00256 3.78 16.15
4 640 28 0.00128 7.43 64.60
5 1280 42 0.00064 15.88 258.40
6 2560 63 0.00032 29.32 1033.60
7 5120 94 0.00016 65.63 4134.40
8 10240 141 0.00008 127.29 16537.60
9 20480 211 0.00004 277.85 66150.40

268 JOHN STRAIN

FIG. 1. Single layer potential of 30 cos 30 on an o¢er circle.

circle or four circles. We did not include images for the local
calculation, so 6 was chosen so that images were negligible.
This put a lower bound on p = M via the Fourier series
truncation error estimate. The direct calculation now con-
sists of the same local part as the fast algorithm, cut off at
the same distance, together with direct evaluation of the
Fourier coefficients of the local part. The Fourier series is
then evaluated on the grid with an FFT, as direct evaluation
would be unfair. Thus the only difference between the fast
and direct calculations is that the fast algorithm evaluates
the Fourier coefficients much more efficiently. The fast algo-
rithm is O(M2 + N) work, whereas the direct calculation
requires O(M2N) work. The growth of the time required by
the fast algorithm is actually closer to linear than to
quadratic; this is because most of the effort is spent on
evaluating the local part, which is an O(N) calculation.
Again, the error was relatively small as well as absolutely
small; the potential has roughly the same number of signifi-
cant digits in different places, despite the fairly rapid spatial

FIG. 2. Single layer potential of 20 cos 28 on the union of four circles.

TABLE VII

Results of Evaluating (on a Mx M Grid) the Single Layer
Potential of 30 cos 30 on a Circle

Case N A4 6 E, E‘i T, T,,

1 20 I 0.02048 O.lllE-01 O.lllE-01 3.89 3.67
2 40 13 0.005 12 0.785E -02 0.785E -02 10.29 10.58
3 80 25 0.00128 0.898E -03 0.898E -03 21.65 28.71
4 160 49 0.00032 0.285E -03 0.285E - 03 45.15 113.22
5 320 97 O.OOCG8 0.658E -04 0.658E -04 97.71 688.92
6 640 193 0.00002 O.l44E-04 O.lME-04 229.83 5173.21

variation evident in Fig. 1. In this calculation, we used q = 5
points for Gaussian quadrature of both the local part and
the Fourier coefficients. The same sequence of tolerances E
was used as in the previous example.

Table 8 shows results for evaluating the four-circle poten-
tial on the grid. Again, the fast algorithm is much faster than
the direct calculation. A speedup of 70 is obtained with 2560
points distributed over the four circles. Asterisks denote
direct timings estimated by extrapolation from previous
values.

8.3. Discrete Sums

Finally, we present two numerical examples for the dis-
crete sum algorithm. In the first, we generated N random
points uniformly on B, and observe the predicted linear
growth of work with N; in the second, we distribute
points uniformly on a circle and observe the expected
O(N4j3 log N) work requirement. Both cases exhibit a con-
siderable speedup, compared to a direct calculation with the
same accuracy. The breakeven point is quite low as well,
indicating that the fast algorithm has very little overhead.

We compared our scheme with a direct evaluation
scheme which computes

S(i) = ;! K(x;, Xi) pj
j=l

to accuracy EM with M= C 1~~1. To carry out the direct
evaluation, we split K = K, + K, by Ewald summation and

TABLE VIII

Time Required to Evaluate (on the Grid) the Single Layer
Potential of 20 cos 28 on the Union of Four Circles

Case N A4 6 r, Td

1 80 I 0.02048 8.54 7.84
2 160 13 0.00512 19.12 20.69
3 320 25 0.00128 40.08 69.29
4 640 49 0.00032 87.07 554.32
5 1280 97 0.00008 205.24 4434.56*
6 2560 193 0.00002 509.30 35416.48*

LAYER POTENTIALS AND DISCRETE SUMS 269

TABLE IX

Results for the O(N log N) Discrete Sum Algorithm with
Uniformly Distributed Points

4
5
6

8
9

10
11
12
13

N P 6 T/ T, E, Ed

10 5 0.020480
20 8 0.010240
40 12 0.005120
80 17 0.002560

160 25 0.001280
320 36 0.000640
640 51 0.000320

1280 73 0.000160
2560 104 0.003080
5120 148 O.OooO4O

10240 210 O.OOQO20
20480 297 0.000010
40960 421 O.OCWJ5

0.73
1.44
2.87

11.12
21.06
35.39
74.88

142.81

0.82
3.50

14.32
56.88

228.16
908.16

3701.12
14896.64

285.96 59898.88
545.12 236687.36

1123.72 944834.56
2113.84 3753179.20
4111.72 15002624.00

0.602E-06 0.470E-07
0.263E-06 0.696E-07
O.l25E-06 0.440E-07
0.606E-07 0.4688-07
0.233E-07 0.419E-07
0.688E-08 O.l89E-07
O.S68E-08 0.279E-07
O.l33E-08 0.229E-07
O.l19E-08 0.236E-07
0.435E-09 0.233E-07
0.107E-09 0.236E-07
0.763E-10 0.226E-07
0.396E-10 0.227E-07

evaluate each piece to accuracy s/2. The splitting parameter
6’ for the direct evaluation is chosen as large as possible
subject to the restriction that only nine images be kept;
thus we required

26’
-e- 1i46’ d E/2.

IL

The number of terms p2 kept in K, was then set by the
Fourier series truncation error estimate

Typically, we took E = 10ee6, 6’ = 0.02, and p = 7. We used
the direct summation method to evaluate the potential at 10
points and extrapolated the time estimates.

First we used random x, uniformly distributed over B. We
took E= 10p6, and used a mesh of size 4p with seventh-
order interpolation in the Fourier series evaluation scheme.
We took N= 10, 20, 40, The results are shown in
Table IX, where T, is the CPU time required for the direct
calculation, T,- is the time required by the fast algorithm,

TABLE X

Results for the Discrete Sum Algorithm with Points Distributed on
a Circle; the Algorithm is then 0(N4j3 log N).

Case N p T, T‘I 4

1 20 6
2 40 10
3 80 16
4 160 26
5 320 42
6 640 67
7 1280 107
8 2560 170
9 5120 270

IO 10240 429

0.020480
0.008127
0.003225
0.001280
0.000508
0.000202
0.0ooo80
0.000032
o.m13

1.63 2.70 0.63SE-07
2.93 10.84 0.469E-07
9.28 44.08 O.l92E-07

19.15 177.76 0.378E-08
34.65 718.40 O.S23E-08
18.27 2947.20 0.411E-08

183.00 11773.44 0.2598-08
523.16 46376.96 34.65

10.84 T r r r 9 2 T f 0 . 0 0 1 3 8 r (T r E T j 5 D 3 5 0 8 n 9 6 2 2 0 2) T E . , 6 9 0 T D 3 T r - 0 . 0 0 7 6 T c - 0 T 5 9 0 . 0 1 2 2 3 T r - 0 . 0 0 7 6 T c - 0 . 1 2 5 3 T 4 2 3 5 0 8 n 9 6 2 6 7 1 8 . 4 0 1 1 7 7 3 7 2 3 T j 0 T r l l B T 0 . 8 6 6 7 0 0 1 0 1 0 T D 9 7 . 9 2 3 1 8 D 3 5 0 8 n 9 4 1 1 3 . 5 2 O S S 5 E T B T 0 . 8 6 6 7 0 0 1 1 0 5 . 6 9 7 . 9 2 T 0 T 1 3 7 e 5 0 8 n 9 2 . 8 2 0 T r E 7 2 0 E T B T 0 . 8 6 6 7 0 T * 1 1 0 5 . 6 9 7 6 0 E T B T 0 . 8 6 6 7 0 T * 1 1 0 5 . 6 9 9 9 9 E T B T 0 . 8 6 6 7 0 T * 1 1 0 5 . 6 9 8 1 6 E T B T 0 . 8 6 6 7 0 . 0 7 3 T 8 6 6 7 0 0 1 1 0 5 . 6 9 8 4 6 E T B T 0 . 8 6 6 7 0 T r - 0 . 0 8 8 9 T c - 0 3 T T w 7 1 0 0 5 3 T r - 0 . 0 0 7 6 9 T w T 2 5 3 1 6 (4 4 . 0 8) 0 6

270 JOHN STRAIN

speedups of 4000 can be achieved in calculations with 13. L. Greengard and J. Strain, Commun. Pure Appl. Math. XLIII, 949

40,000 random uniformly distributed particles, and the (1990).

algorithm breaks even at 10 particles. 14. J. A. Gregory, in Mathematics of Finite Elements and Applications IV,
MAFELAP 1981, edited by J. R. Whiteman (Academic Press,
New York, 1982), p. 498.

ACKNOWLEDGMENTS 15. H. Hasimoto, J. Fluid Mech. 5, 317 (1959).

16. F. K. Hebeker, in Mathematics of Finite Elements and Applications V,
I thank V. Rokhlin, for suggesting the idea of his unpublished non-equi- MAFELAP 1984, edited by J. R. Whiteman (Academic Press, New

distant FFT algorithm to me, and one of the referees, for his constructive York, 1985) p. 257.
criticism. 17. E. Hille, Ann. of M&h. 27, 427 (1926).

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

REFERENCES

D. J. Adams and G. S. Dubey, J. Comput. Phys. 72, 156 (1987).

C. Anderson, J. Comput. Phys. 62, 111 (1986).

G. Beylkin, R. R. Coifman, and V. Rokhlin, preprint, 1989.

A. Brandt and A. A. Lubrecht, J. Cornput. Phys., to appear.

J. Carrier, L. Greengard, and V. Rokhlin, SIAM J. Sci. Sfafist. Compuf.
9, 669 (1988).

A. J. Chorin, Commun. Math. Phys. 83, 517 (1982).

M. Costabel, SIAM J. Math. Anal. Appl. 19, 613 (1988).

P. J. Davis and P. Rabinowitz, Methods of Numerical Integration
(Ginn, Blaisdell, Boston, 1967).

H. Dym and H. P. McKean, Fourier Series and Integrals (Academic
Press, New York/London, 1972).

A. Erdelyi (Ed,), Higher Transcendental Functions, Vol. II
(McGraw-Hill, New York, 1953).

P. P. Ewald, Ann. Phys. (Leipzig) 64,253 (1921).

L. Greengard and J. Strain, SIAM J. Sci. Statist. Compul. 12, 79
(1991).

18. F. de Hoog and R. Weiss, Math. Compur. 27, 295 (1973).

19. C. G. L. Johnson and L. R. Scott, SIAM J. Numer. Anal. 26, 1356
(1989).

20. M. Kac, Integration in Function Space and Some of Its Applications
(Academia Nazionale dei Lincei Scuola Normae Superiore Lezioni
Fermiane, Pisa, 1980).

21. 0. Kellogg, Foundations of Pofential Theory (Dover, New York, 1937).

22. J. C. Nedelec, in Mathematical Analysis and Numerical Methods,for
Science and Technology, by R. Dautray and J.-L. Lions, transl. by
I. N. Sneddon, Springer-Verlag, New York/Berlin, 1988, Chaps. 11
and 13.

23. L. Reichel, J. Compuf. Murh. 14, 125 (1986).

24. V. Rokhlin, J. Compuf. Phys. 60, 187 (1985).

25. V. Rokhlin, unpublished manuscript.

26. J. E. Romate, SIAM J. Numer. Anal. 27, 529 (1990).

27. J. Sethian and J. Strain, J. Comput. Phys., in press.

28. J. Strain, J. Comput. Phys. 85, 342 (1989).

29. W. L. Wendland, in Malhematics of Finite Elements and Applications
V, MAFELAP 1984, edited by J. R. Whiteman (Academic Press,
New York, 1985) p. 193.

